Info!
The EI library in London is temporarily closed, as a precautionary measure in light of the ongoing COVID-19 situation. The Knowledge Service will still be answering email queries via info@energyinst.org, and is available for live chats on this page during working hours (09:15-17:00 GMT). Our e-library is always open for members here: https://knowledge.energyinst.org/services/elibrary, for full-text access to over 200 e-books and millions of articles. We are sorry for any inconvenience.

The production of ethanol from lignocellulose-rich materials such as wood residu ...

The production of ethanol from lignocellulose-rich materials such as wood residues, waste paper, used cardboard and straw cannot yet be achieved at the same efficiency and cost as from corn starch. A cost comparison has concluded that using lignocellulose materials is unlikely to be competitive with starch until 2020 at the earliest. The study, published in the international journal Biofuels, Bioproducts & Biorefining, did, however, identify many opportunities for reducing costs and improving income within the lignocellulose-to-ethanol process, and provides insight into the priority areas that must be addressed in coming years. Ethanol can be blended with gasoline to reduce dependency on fossil fuels. The last 15 years has seen a massive growth of so-called first-generation processes that use enzymes and bacteria to turn the starch and sugars in corn and sugarcane into ethanol. But corn and sugarcane are also important components of the human food web, so using them for ethanol production has the potential to affect the price and availability of these basic commodities, states the study. On the other hand, lignocellulose materials are often hard to dispose of, but they are rich in sugars that can be fermented into ethanol following appropriate processing. ‘Not only is cellulose the most abundant polymer on Earth, it cannot be digested by humans, so using it for fuel production does not compete directly with food supplies,’ says the study’s lead author Jamie Stephen, who works in the Department of Wood Science at the University of British Columbia in Vancouver, Canada. The race is on to commercialise this second generation ethanol. Stephen’s work focuses on the fact that the cost of building large-scale ethanol-producing facilities will likely be higher for second generation ethanol compared to first generation technologies. One reason is that sources of lignocellulose may require significant and costly pre-treatment. ‘Researchers and companies are going to have to concentrate on reducing the cost of pretreatment and increasing the output of the digester in order to reduce the costs of the lignocellulose-to-ethanol process,’ he suggests. Another reason costs are higher is that lignocellulose is made of multiple kinds of sugar, while corn starch consists of pure glucose. Corn starch can be reduced to glucose with low-cost amylase enzymes, while pre-treated lignocellulose requires a cocktail of cellulase enzymes. Providing these enzymes is one of the major costs of the whole process, but, at present, 12 times more cellulose than amylase protein is needed to generate the same amount of ethanol from woody biomass. ‘Despite much effort and progress over the last few years, the cost of using cellulase enzymes is still significantly higher than for amylase-based processes, and will need to be reduced substantially before lignocellulose starts to become competitive with corn and sugarcane as a feedstock,’ says Stephen. Finally, while the input to sugarcane- and corn starch-based systems is fairly constant, the feedstocks that go into lignocellulose systems are much more variable. Different species of tree produce wood that has different properties, and waste paper and agricultural wastes will have many different types of material in them. To get maximum efficiency, each type of biomass needs to be processed under different conditions, which introduces another challenge for anyone wanting to make ethanol from these materials. For more information, visit http://doi.wiley.com/10.1002/bbb.331

News Item details


Please login to save this item